Note

Determination of kinetic parameters from thermogravimetric data

RUDOLF RÖCK

Institut für Baustofflehre und Materialprüfung, Universität Innsbruck, Technikerstr. 13, 6020 Innsbruck (Austria)

(Received 6 June 1977)

The method described enables the determination of the kinetical parameter, activation energy, and the frequency factor with the degree of error generally being **below one percent_ The dam on which the calculations are to be based has to be prepared in form of combined measurement couples as used in electronic data processing.**

MATHEXATICAL PROCEDURE

In principle, the kinetic parameter is czdculated by means of the method of least squares. For this purpose, the rate of chemical change has to be written in the form of a differential equation and the transition from differentials to finite differences, as feasible under certain conditions*, has to bc made.

$$
\frac{da}{dt} \cong \frac{Aa}{dt} = k \cdot f(a) \qquad k = Z \cdot \exp(-E/RT)
$$

For a satisfactory kinetical parameter, the sum of the least squares E and 2 has to provide a minimum value.

If we substitute

 $f(a) = (1 - a)^n$, where $n =$ order of reaction

for **f(o), then we obtain the foliowing conditions for determining the vaIucs required:**

$$
\sum_i \left[\frac{\Delta a_i}{\Delta t_i} - Z \cdot \exp \left(- E / RT_i \right) \cdot \left(1 - a_i \right)^{\mu} \right]^2 = \min = \sum A_i^2
$$

These conditions are only fuIfilled if it is valid that:

$$
\frac{\partial}{\partial n}(\sum A_i^2)=0; \frac{\partial}{\partial E}(\sum A_i^2)=0; \frac{\partial}{\partial Z}(\sum A_i^2)=0
$$

The conditions are a sufficiently small distance between the points of measurement. 80 to 100 **equidistant points of measurement have proved to be sufficient.**

Thus we obtain the following four equations:

$$
\sum_{i} \left[\frac{Aa_i}{At_i} - Z \cdot \exp\left(-E/RT_i\right) \cdot (1 - a_i)^2 \right]^2 = \min \tag{1}
$$

$$
\sum_i [A_i \cdot n \cdot Z \cdot (1 - a_i)^{n-1} \cdot \exp(-E/RT_i)] = 0
$$
 (2)

$$
\sum_{i} [A_i \cdot (Z/RT_i) \cdot (1 - a_i)^{k} \cdot \exp(-E/RT_i)] = 0
$$
 (3)

$$
\sum_{i} \left[-A_{i}(1-a_{i})^{*} \cdot \exp\left(-E/RT_{i}\right) \right] = 0 \tag{4}
$$

Using the equation (4) the frequency factor 2 can easily be determined:

$$
Z = \frac{\sum_{i} \frac{Aa_i}{\Delta t_i} (1 - a_i)^* \cdot \exp(-E/RT_i)}{\sum_{i} [(1 - a_i)^* \cdot \exp(-E/RT_i)]^2}
$$

By varying the coefficients E and n , the minimum value of the first equation can be **calculated and thus aIso the required parameters n, E and 2.**

TESTING THE METHOD

In order to test the method, the predetermined reaction curves, as estimated by applying Sestak's formula, were analysed. Sestak's⁷ formula: $x = E/RT$

$$
p(x) = \frac{\exp(-x)}{x} \frac{674.567 - 57.412x - 6.055x^2 - x^3}{1699.066 + 841.655x + 49.313x^2 - 8.022x^3 - x^4}
$$

TABLE 1

TESTING THE METHOD TO DETERMINE THE KINETICAL PARAMETER WITH THEORETICALLY PREDETERMINED TG-CURVES (calculated with Sestak's formula)

Testing the reproducibility of the results concerning energy of activation and frequency factor.

TABLE 2

REACTION INVESTIGATED: CALCIUM OXALATE-DEHYDRATION $CaC₂O₄ · H₂O \rightarrow CaC₂O₄ + H₂O$ (order of reaction: $n = 0.5$)

TABLE 3

REACTION INVESTIGATED: ETTRINGITE-DEHYDRATION $6CaO + Al₂O₃ - 3SO₃ - 30H₂O \rightarrow 6CaO + Al₂O₃ - 3SO₃ - 6H₂O + 24H₂O$ (order of reaction: $n = 1$)

184

As can be seen from the results presented in Table 1 the deviations from the mean value lie only within the range of the second decimal point.

The reproducibility of the measurement of the kinetical parameter was tested by using 12 series of measurements with calcium oxalate CaC_1O_4 \cdot H₂O and ettringite syn. 6CaO · Al₂O₃ · 3SO₃ · 30H₂O, respectively. The results, as presented in Tables 2 and 3, show that measurements of the kinetical parameter with a standard deviation of less than 1% are quite feasible.

EXPERIMENTAL PROCEDURE

The relevant thermogravimetric measurements were derived by using a Mettler thermoanalyser. 200-mg samples were used. The heat increase was kept to 2° C min⁻¹. The data was processed in a mini computer (CAI) attached. It was also used for the numerical calculations.

REFERENCES

- 1 B. Carroll and E. P. Manche, Thermochim. Acta, 5 (1973) 449.
- 2 A. W. Coats and J. P. Redfern, Nature, 20 (1964) 88.
- 3 C. D. Doyle, J. Appl. Polym. Sci., 5 (1961) 285.
- 4 G. Gyulai and E. J. Greenhow, J. Therm. Aral., 6 (1974) 279.
- 5 J. Peters and H. G. Wiedmann, Z. Anorg. Allg. Chem., 300 (1959).
- 6 V. Satava, J. Therm. Anal., 5 (1973) 217.
- 7 J. Sestak, ICTA, 2 (1972) 3.
- 8 J. Zsako, J. Therm. Anal., 2 (1970) 145.